§ 146.89

- (d) Other than during periods of well workover (maintenance) approved by the Director in which the sealed tubing-casing annulus is disassembled for maintenance or corrective procedures, the owner or operator must maintain mechanical integrity of the injection well at all times.
- (e) The owner or operator must install and use:
- (1) Continuous recording devices to monitor: The injection pressure; the rate, volume and/or mass, and temperature of the carbon dioxide stream; and the pressure on the annulus between the tubing and the long string casing and annulus fluid volume; and
- (2) Alarms and automatic surface shut-off systems or, at the discretion of the Director, down-hole shut-off systems (e.g., automatic shut-off, check valves) for onshore wells or, other mechanical devices that provide equivalent protection; and
- (3) Alarms and automatic down-hole shut-off systems for wells located off-shore but within State territorial waters, designed to alert the operator and shut-in the well when operating parameters such as annulus pressure, injection rate, or other parameters diverge beyond permitted ranges and/or gradients specified in the permit.
- (f) If a shutdown (i.e., down-hole or at the surface) is triggered or a loss of mechanical integrity is discovered, the owner or operator must immediately investigate and identify as expeditiously as possible the cause of the shutoff. If, upon such investigation, the well appears to be lacking mechanical integrity, or if monitoring required under paragraph (e) of this section otherwise indicates that the well may be lacking mechanical integrity, the owner or operator must:
 - (1) Immediately cease injection;
- (2) Take all steps reasonably necessary to determine whether there may have been a release of the injected carbon dioxide stream or formation fluids into any unauthorized zone:
- (3) Notify the Director within 24 hours;
- (4) Restore and demonstrate mechanical integrity to the satisfaction of the Director prior to resuming injection; and

(5) Notify the Director when injection can be expected to resume.

§ 146.89 Mechanical integrity.

- (a) A Class VI well has mechanical integrity if:
- (1) There is no significant leak in the casing, tubing, or packer; and
- (2) There is no significant fluid movement into a USDW through channels adjacent to the injection well bore.
- (b) To evaluate the absence of significant leaks under paragraph (a)(1) of this section, owners or operators must, following an initial annulus pressure test, continuously monitor injection pressure, rate, injected volumes; pressure on the annulus between tubing and long-string casing; and annulus fluid volume as specified in §146.88 (e);
- (c) At least once per year, the owner or operator must use one of the following methods to determine the absence of significant fluid movement under paragraph (a)(2) of this section:
- (1) An approved tracer survey such as an oxygen-activation log; or
- (2) A temperature or noise log.
- (d) If required by the Director, at a frequency specified in the testing and monitoring plan required at § 146.90, the owner or operator must run a casing inspection log to determine the presence or absence of corrosion in the long-string casing.
- (e) The Director may require any other test to evaluate mechanical integrity under paragraphs (a)(1) or (a)(2) of this section. Also, the Director may allow the use of a test to demonstrate mechanical integrity other than those listed above with the written approval of the Administrator. To obtain approval for a new mechanical integrity test, the Director must submit a written request to the Administrator setting forth the proposed test and all technical data supporting its use. The Administrator may approve the request if he or she determines that it will reliably demonstrate the mechanical integrity of wells for which its use is proposed. Any alternate method approved by the Administrator will be published in the FEDERAL REGISTER and may be used in all States in accordance with applicable State law unless its use is restricted at the time of approval by the Administrator.

Environmental Protection Agency

- (f) In conducting and evaluating the tests enumerated in this section or others to be allowed by the Director, the owner or operator and the Director must apply methods and standards generally accepted in the industry. When the owner or operator reports the results of mechanical integrity tests to the Director, he/she shall include a description of the test(s) and the method(s) used. In making his/her evaluation, the Director must review monitoring and other test data submitted since the previous evaluation.
- (g) The Director may require additional or alternative tests if the results presented by the owner or operator under paragraphs (a) through (d) of this section are not satisfactory to the Director to demonstrate that there is no significant leak in the casing, tubing, or packer, or to demonstrate that there is no significant movement of fluid into a USDW resulting from the injection activity as stated in paragraphs (a)(1) and (2) of this section.

§ 146.90 Testing and monitoring requirements.

The owner or operator of a Class VI well must prepare, maintain, and comply with a testing and monitoring plan to verify that the geologic sequestration project is operating as permitted and is not endangering USDWs. The requirement to maintain and implement an approved plan is directly enforceable regardless of whether the requirement is a condition of the permit. The testing and monitoring plan must be submitted with the permit application, for Director approval, and must include a description of how the owner or operator will meet the requirements of this section, including accessing sites for all necessary monitoring and testing during the life of the project. Testing and monitoring associated with geologic sequestration projects must, at a minimum, include:

- (a) Analysis of the carbon dioxide stream with sufficient frequency to yield data representative of its chemical and physical characteristics;
- (b) Installation and use, except during well workovers as defined in §146.88(d), of continuous recording devices to monitor injection pressure, rate, and volume; the pressure on the

annulus between the tubing and the long string casing; and the annulus fluid volume added;

- (c) Corrosion monitoring of the well materials for loss of mass, thickness, cracking, pitting, and other signs of corrosion, which must be performed on a quarterly basis to ensure that the well components meet the minimum standards for material strength and performance set forth in §146.86(b), by:
- (1) Analyzing coupons of the well construction materials placed in contact with the carbon dioxide stream; or
- (2) Routing the carbon dioxide stream through a loop constructed with the material used in the well and inspecting the materials in the loop; or
- (3) Using an alternative method approved by the Director;
- (d) Periodic monitoring of the ground water quality and geochemical changes above the confining zone(s) that may be a result of carbon dioxide movement through the confining zone(s) or additional identified zones including:
- (1) The location and number of monitoring wells based on specific information about the geologic sequestration project, including injection rate and volume, geology, the presence of artificial penetrations, and other factors; and
- (2) The monitoring frequency and spatial distribution of monitoring wells based on baseline geochemical data that has been collected under \$146.82(a)(6) and on any modeling results in the area of review evaluation required by \$146.84(c).
- (e) A demonstration of external mechanical integrity pursuant to \$146.89(c) at least once per year until the injection well is plugged; and, if required by the Director, a casing inspection log pursuant to requirements at \$146.89(d) at a frequency established in the testing and monitoring plan;
- (f) A pressure fall-off test at least once every five years unless more frequent testing is required by the Director based on site-specific information;
- (g) Testing and monitoring to track the extent of the carbon dioxide plume and the presence or absence of elevated pressure (e.g., the pressure front) by using:
- (1) Direct methods in the injection zone(s); and,